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Abstract

In this paper we present a new method of interval fuzzy model identification. The method combines a fuzzy identification methodology
with some ideas from linear programming theory. On a finite set of measured data, an optimality criterion that minimizes the maximal
estimation error between the data and the proposed fuzzy model output is used. The idea is then extended to modelling the optimal lower
and upper bound functions that define the band that contains all the measurement values. This results in a lower and an upper fuzzy model
or a fuzzy model with a set of lower and upper parameters. The model is called the interval fuzzy model (INFUMO). The method can
be used when describing a family of uncertain nonlinear functions or when the systems with uncertain physical parameters are observed.
We believe that the fuzzy interval model can be very efficiently used, especially in fault detection and in robust control design.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The problem of the function approximation from a finite
set of measured data using an optimality criterion that min-
imizes the estimation error has received a great deal of at-
tention in the scientific community, especially with the ad-
vent of neural network techniques. Continuous piecewise
linear (PWL) functions have also been used for the func-
tion approximation, particularly since the introduction of the
canonical expression byChua and Deng (1988). Since then a
high-level canonical piecewise linear (HLCPWL) represen-
tation of all the continuous PWL mappings defined over a
simplicial partition of a domain inn-dimensional space has
been introduced byJulian, Jordan, and Desages (1998)and
Julian, Desages, and Agamennoni (1999). This representa-
tion is able to uniformly approximate any Lipschitz con-
tinuous function defined on a compact domain. Moreover,
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in contrast to neural networks, if the Lipschitz constant of
the nonlinear function is known, it is possible to calculate
the number of terms required to obtain a given error. An up-
per and lower PWL function can be evaluated to optimally
describe the interval of all the possible values of the uncer-
tain function. A salient feature of the methodology is that the
approximation problem is reduced to a linear programming
(LP) problem, for which efficient solution algorithms exist
(Vanderbei, 1996).
The fuzzy model, in Takagi–Sugeno (TS) form, approxi-

mates the nonlinear system by smoothly interpolating affine
local models (Takagi & Sugeno, 1985). Each local model
contributes to the global model in a fuzzy subset of the
space characterized by a membership function. In this pa-
per we look at the development of an intervall∞-norm
function approximation methodology problem using the LP
technique and the TS fuzzy-logic approach. This results in
a lower and upper fuzzy model or a fuzzy model with lower
and upper parameters. We call this model the interval fuzzy
model (INFUMO). It is well known that the structure and
shape of if-part fuzzy sets have a significant effect on the
fuzzy-model approximation of continuous functions (Kosko,
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1994). Therefore, the proposed approachwill exhibit an extra
degree of flexibility in the domain partition as well as in the
use of different membership functions compared with the
HLCPWL technique.
The interval fuzzy model identification is a methodology

for approximating the functions of a finite set of input and
output measurements that can also be used to compress in-
formation in the case of a nonlinear function family approx-
imation to obtain the interval of parameters that results in
a band containing the whole set of measurements. This is
of great importance in many technological areas, e.g., the
modelling of nonlinear time-invariant systems with uncer-
tain physical parameters, such as nonlinear circuits. The in-
terval fuzzy models are also very efficient when used for
fault detection. With fault detection the INFUMO model of

a normal data set is identified and compared with the tested
data. When the data of the tested system do not correspond
to the tolerance band defined by lower and upper model then
we can assume the faulty functioning of the corresponding
system.

The paper is organized as follows: Section 2 provides the
background to the fuzzy modelling; Section 3 describes the
idea of fuzzy-model identification usingl∞ norm; Section 4
introduces the interval fuzzy model identification; and Sec-
tion 5 presents an application to the approximation of con-
tinuous functions.

2. Nonlinear model described in fuzzy form

A typical fuzzy model (Takagi & Sugeno, 1985) is given
in the form of rules

Rj : if xp1 is A1,k1 andxp2 is A2,k2 and. . .and

xpq is Aq,kq theny = �j (x), j = 1, . . . , m,

k1 = 1, . . . , f1, k2 = 1, . . . , f2, . . . , kq = 1, . . . , fq .

(1)

Theq-element vectorxTp =[xp1, . . . , xpq ] denotes the input
or variables in premise, and the variabley is the output of
the model. With each variable in premisexpi (i =1, . . . , q),
fi fuzzy sets (Ai,1, . . . ,Ai,fi

) are connected, and each fuzzy
set Ai,ki

(ki = 1, . . . , fi) is associated with a real-valued
function �Ai,ki

(xpi) : R → [0,1], that produces the mem-
bership grade of the variablexpi with respect to the fuzzy

setAi,ki
. To make the list of fuzzy rules complete, all possi-

ble variations of fuzzy sets are given in Eq. (1), yielding the
number of fuzzy rulesm=f1×f2×· · ·×fq . The variables
xpi are not the only inputs of the fuzzy system. Implicitly,
the n-element vectorxT = [x1, . . . , xn] also represents an
input to the system. It is usually referred to as the conse-
quence vector. The functions�j (·) can be arbitrary smooth
functions in general, although linear or affine functions are
normally used.
The system in Eq. (1) can be described in closed form

if the intersection of the fuzzy sets is previously defined.
The generalized form of the intersection is the so-called
triangular norm(T-norm). In our case, the latter was chosen
as an algebraic product providing the output of the fuzzy
system:

y =
∑f1

k1=1

∑f2
k2=1 · · · ∑fq

kq=1�A1,k1
(xp1)�A2,k2

(xp2) . . .�Aq,kq
(xpq)�j (x)

∑f1
k1=1

∑f2
k2=1 · · · ∑fq

kq=1�A1,k1
(xp1)�A2,k2

(xp2) . . .�Aq,kq
(xpq)

. (2)

It should be noted that there is a slight abuse of notation in
Eq. (2), sincej is not explicitly defined as a running index.
From Eq. (1) it is evident that eachj corresponds to the
specific variation of indexeski , i = 1, . . . , q.
To simplify Eq. (2), a partition of unity is considered

where the functions�j (xp), defined by

�j (xp) =
�A1,k1

(xp1)�A2,k2
(xp2) . . .�Aq,kq

(xpq)

∑f1
k1=1

∑f2
k2=1 · · · ∑fq

kq=1�A1,k1
(xp1)�A2,k2

(xp2) . . .�Aq,kq
(xpq)

, j = 1, . . . , m, (3)

give information about the fulfilment of the respective
fuzzy rule in the normalized form. It is obvious that∑m

j=1�j (xp) = 1 irrespective ofxp as long as the denom-
inator of �j (xp) is not equal to zero (this can be easily
prevented by stretching the membership functions over the
whole potential area ofxp). Combining Eqs. (2) and (3)
and changing the summation overki to a summation overj
we arrive at the following equation:

y =
m∑

j=1

�j (xp)�j (x). (4)

From Eq. (4) it is evident that the output of a fuzzy system
is a function of the premise vectorxp (q-dimensional) and
the consequence vectorx (n-dimensional). The dimension
of the input space may be lower than(q +n) since it is very
common to have the same variables present in vectorsxp

andx. Vectorz (d-dimensional) is composed of the elements
of xp, and those ofx that are not present inxp.
Very often, the output value is defined as a linear combi-

nation of consequence states

�j (x) = �Tj x, j = 1, . . . , m, �Tj = [�j1, . . . , �jn]. (5)

If the TS model of the 0th order is chosen,�j (x) = �j0,
and in the case of the first-order model, the consequent is
�j (x) = �j0 + �Tj x. Both cases can be treated with model
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(5) by adding 1 to the vectorx and augmenting vector�
with �j0. To simplify the notation, only the model in Eq.
(5) will be treated in the rest of the paper. If the matrix
of the coefficients for the whole set of rules is written as
�T =[�1, . . . , �m], and the vector of membership values as
�T(xp)=[�1(xp), . . . ,�m(xp)], then Eq. (4) can be rewritten
in the matrix form

y = �T(xp)�x. (6)

The fuzzy model in the form given in Eq. (6) is referred
to as the affine TS model and can be used to approximate
any arbitrary function that maps the compact setC ⊂ Rd to
R with any desired degree of accuracy (Kosko, 1994; Ying,
1997; Wang & Mendel, 1992). The generality can be proven
with the Stone–Weierstrass theorem (Goldberg, 1976) which
suggest that any continuous function can be approximated
by a fuzzy basis function expansion (Lin, 1997).

3. Fuzzy model identification usingl∞ norm

In this section we discuss an approach to the model pa-
rameter estimation where thel∞ norm is used as the crite-
rion for the measure of the modelling error. We assume a set
of premise vectorsXp = {xp1, xp2, . . . , xpN } and a set of
antecedent (or consequence) vectorsX = {x1, x2, . . . , xN },
from which a setZ = {z1, z2, . . . , zN } can be constructed
that represents the input measurement data, collected from
the compact setS ⊂ Rd . A set of corresponding outputs
is also defined asY = {y1, y2, . . . , yN }. The measurements
satisfy the nonlinear equation of the system

yi = g(zi ), i = 1, . . . , N. (7)

According to the Stone–Weierstrass theorem , for any given
real continuous functiong on a compact setU ⊂ Rd and
arbitrary�>0 , there exist a fuzzy systemf such that

max
zi∈Z

|f (zi ) − g(zi )| < �, ∀i. (8)

This implies the approximation of any given real continuous
function with a fuzzy function from classFd defined in
Eq. (6). However, it has to be pointed out that lower values
of � imply higher values ofm that satisfy Eq. (8). In the
case of the approximation, the error between the measured
values and the fuzzy function outputs can be defined as

ei = yi − f (xi ), i = 1, . . . , N. (9)

To estimate the optimal parameters of the proposed fuzzy
function the minimization of the maximum modelling error

max
zi∈Z

|yi − f (zi )| (10)

over the whole input setZ is performed. This is themin–max
optimization method. In the case of the TS model in Eq.
(6), the minimization of the expression in Eq. (10) can be
performed in two steps. The first problem is how tominimize

the error with respect toxp. The answer lies in the proper
arrangement of membership functions. This is a well-known
problem in fuzzy systems. It can be overcome with a cluster
analysis (Bezdek, Coray, Gunderson, & Watson, 1981a,b)
or other approaches. The details will not be discussed in
this paper. By having the membership functions defined, the
structure of the model is known and only the parameters�
are to be defined by themin–maxoptimization

� = arg min
�

max
zi∈Z

|yi − �T(xpi)�xi |. (11)

Lemma 1. The min–max optimization problem can be
solved as the linear programming problem of minimizing�,
subject to the inequalities

yi −
m∑

j=1

�j (xpi)�
T
j xi ��, i = 1,2, . . . , N,

−yi +
m∑

j=1

�j (xpi)�
T
j xi ��, i = 1,2, . . . , N, ��0

(12)

on the parameter�j (j = 1, . . . , m). The resulting� stands
for the maximum approximation error.

Proof. If we define

� =max
zi∈Z

∣∣∣∣∣∣
yi −

m∑

j=1

�j (xpi)�
T
j xi

∣∣∣∣∣∣
(13)

and take into account thatzi encapsulates the information in
vectorsxpi andxi , this directly implies the following system
of inequalities:
∣∣∣∣∣∣
yi −

m∑

j=1

�j�Tj xi

∣∣∣∣∣∣
��, i = 1,2, . . . , N (14)

which can then be written in the form (12). This con-
cludes the proof of Lemma 1, and the optimization problem
from (11) can be stated as the minimization of� subject
to (12). �

The idea of an approximation can be interpreted as the
most representative fuzzy function to describe the domain
of outputsY as a function of inputsZ. This problem can
also be viewed as a problem of data reduction, which often
appears in identification problems with large data sets.

4. Interval fuzzy model identification

In the case of an uncertain nonlinear function, which can
be defined as a member of the family of functions

G = {g : S→ R1|g(z) = gnom(z) + �g(z)}, (15)
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wheregnom stands for the nominal function, the uncertainty
�g satisfies supz∈S|�g(z)|�c, c ∈ R.
Let us consider a functiong ∈ G and corresponding set

of measured output valuesY = {y1, . . . , yN } over the set of
inputsZ, i.e.,yi = g(zi ), g ∈ G, zi ∈ S, i = 1, . . . , N .
The idea of robust interval fuzzy modelling is to find

a lower fuzzy functionf and an upper fuzzy function̄f
satisfying

f (zi )�g(zi )� f̄ (zi ), ∀zi ∈ S. (16)

In this sense, a function from classG can always be found in
the band defined by the upper and the lower fuzzy function.
The main request in defining the band is that it is as narrow
as possible according to the proposed constraints. The prob-
lem has been treated in the literature using the PWL function
approximation (Julian et al., 1998). Our approach using the
fuzzy function approximation can be viewed as a generaliza-
tion of the PWL approach and gives a better approximation,
or at least a much narrower approximation band.
The upper and the lower fuzzy functions, respectively, can

be found by solving the following optimization problems:

min
f

max
zi∈Z

|yi − f (zi )| subject toyi − f (zi )�0, ∀i, (17)

min
f̄

max
zi∈Z

|yi − f̄ (zi )| subject toyi − f̄ (zi )�0, ∀i. (18)

The solutions to both problems can be found by linear pro-
gramming, because both problems can be viewed as linear
programming problems, as is stated in the following lemma.
First, we have to define a lower and an upper fuzzy function
asf (z) = �T(xp)�x andf̄ (z) = �T(xp)�̄x.

Lemma 2. Themin–max optimization problems in Eqs. (17)
and(18)can be solved as the linear programming problems
of minimizing�1 and�2, subject to the inequalities

yi −
m∑

j=1

�j (xpi)�
T
j xi ��1, i = 1, . . . , N,

yi −
m∑

j=1

�j (xpi)�̄
T
j xi �0, i = 1, . . . , N, �1�0 (19)

and

−yi +
m∑

j=1

�j (xpi)�̄
T
j xi ��2, i = 1, . . . , N

yi −
m∑

j=1

�j (xpi)�
T
j xi �0, i = 1, . . . , N, �2�0 (20)

on the parameters�j , �̄j , j = 1, . . . , m, and �1 and �2
that stand for the maximum approximation errors of both
approximation functions.

Proof. The proof can be directly inferred from
Lemma 1. �

The interval fuzzy modelling can be used efficiently in
the case of fault detection where the data set of normal
operating systems is modelled by INFUMO to obtain the
band of normal functioning. During operations this band
is calculated on-line and it is checked if a measurement
corresponds to the normal functioning band or not. If the
measurement violates the tolerance band, one can assume
that a malfunctionmight have occurred. The proposedmodel
can also be used for the case of robust control design as
described inAckermann (1993).

5. Interval fuzzy model of simplified car dynamics

The interval fuzzy modelling is presented for a nonlinear
time-invariant system with uncertain physical parameters.
These parameters are given as the interval between the min-
imal value and the maximal value,ã ∈ [a, ā] (Ackermann,
1993). The system that is observed is a simplified car dy-
namics with uncertain parameters of the engine force. The
mathematical model that describes the dynamics is

v̇ = fe(u, v) − fd

m
,

fe(u, v) = K̃e(1+ a1u)

× (1+ arctan(ã2u
2 + a3v + a4)), (21)

wherev stands for the velocity of the car in m/s,u is the po-
sition of the throttle in the range[0,1],mstands for the mass
of the car and is equal to 1000 kg,fe(u, v) is the force of the
engine andfd is the resistance force and is approximated
by a constant of 1000N. Some of the engine parameters are
uncertain and vary due to the operating conditions. The val-
ues of the constants in the model are as follows:a1=3, ã2 ∈
[4.2,7.8], a3=−0.35,a4=1.2 andK̃e ∈ [600,900]N. The
characteristic of the engine for a choice of uncertain param-
etersKe=750N anda2=6 is shown inFig. 1. Fig. 1shows
that the characteristic of the engine is highly nonlinear.
Thismodel, with its uncertain parameters, is used to obtain

the data set for the identification of the interval fuzzy model.
Five different simulated responses of the car’s dynamics
(a nominal one and four combinations of the maximal and
minimal values of both interval parameters) to the same
input signal and different values of the uncertain parameters
are obtained and shown inFig. 2. The first half of the data
set was used to estimate the parameters of the INFUMO
and the second half was used to validate the INFUMO. The
observed time responses of the car exhibit the nonlinear
dynamics of the first order. The partitioning of the space
into fuzzy partitions and the number of fuzzy partitions is
done using fuzzyc-means clustering algorithm as proposed
in Babuška (1998), andBezdek et al.(1981a,b)and is shown
in Fig. 3. The lower and the upper bound of the whole
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Fig. 1. The static mapping of the engine.
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Fig. 2. The set of the modelled data—the car dynamics with uncertain
parameters.

data set can be obtained with the INFUMO of the following
affine form, where the operating domain is divided into seven
membership functions that are the same for the lower and
upper bounds:

Rj : if v(k) is Aj thenv(k + 1)

= ajv(k) + bju(k) + rj , j = 1, . . . ,7, (22)

R̄j : if v(k) is Aj then v̄(k + 1)

= āj v̄(k) + b̄j u(k) + r̄j , j = 1, . . . ,7. (23)

The final structure of the INFUMO is written in the fol-
lowing form with interval parameters (Ackermann, 1993):

R̃j : if ṽ(k) is Aj then ṽ(k + 1)

= ãj ṽ(k) + b̃j u(k) + r̃j , (24)

ãj = [aj , āj ], b̃j = [bj , b̄j ], r̃j = [rj , r̄j ],
j = 1, . . . ,7. (25)

The validation of the INFUMO is shown inFig. 4. The
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Fig. 3. The resulting membership functions obtained byc-means clustering
algorithm.
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Fig. 4. The validation of INFUMO model where the grey area represents
the data set of the whole family of responses.

grey area represents the band of measured data set while the
lines show the lower and upper INFUMO model responses.
Fig. 5shows the difference between INFUMO responses and
the measured data set bounds. Note thatv̄ −supv is always
positive andv − inf v is always negative, which shows that
themeasured data set actually lies within the INFUMOband.
As shown in Section 2, the proposed approach is not limited
to only one variable in premise. The addition of an extra
variable into premise would result in better approximation
if this variable influences the nonlinearity of the system.

6. Conclusion

A new method of interval fuzzy model identification has
been proposed that is applicable when a finite set of mea-
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Fig. 5. The upper and the lower bound modelling error.

surement data are available. The method combines a fuzzy
identification methodology with some ideas from linear pro-
gramming theory. The idea is then extended to the modelling
of the optimal lower and upper bound functions that define
the band that contains all the measurement values. This re-
sults in the lower and upper fuzzy models or the interval
fuzzy model (INFUMO). The INFUMO is of great impor-
tance in the case of families of functions where the param-
eters of the observed system vary in certain intervals. This
approach can also be used in data mining to compress the
information or in robust system identification, which can be
of great importance in fault detection.
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